Виды кабеля

Оптический кабель Оптическое волокно (ОВ) является средой передачи информации в оптических системах связи. Первое оптическое волокно с потерями 20 дБ/км (на длине волны 0.633 мкм) было изготовлено фирмой Corning Glass Works в 1970 г. Однако прогресс в этой области был настолько стремителен, что уже в 1972 г. потери в ОВ достигли 4 дБ/км, а современные волокна имеют потери менее 0.2 дБ/км (на длине волны 1.55 мкм). Причем столь малые потери сигнала сохраняются в очень широком диапазоне частот модуляции света и уменьшение амплитуды сигнала с ростом частоты модуляции обусловлено дисперсией, которая для современных волокон со смещенной дисперсией составляет величину порядка 3 пс/нм.км. Таким образом, полоса пропускания собственно волокна может превышать 100 ГГц.км.

Оптическое волокно состоит из световедущей сердцевины, окруженной оболочкой, у которых разные показатели преломления. Оба элемента производятся из высокочистого кварцевого стекла. Полученное в процессе вытяжки оптическое волокно затем покрывается одним или двумя слоями защитного пластикового покрытия, распространенным материалом для которого является акрилат. От покрытия зависит прочность волокна. В основе распространения света по сердечнику лежит принцип полного внутреннего отражения, который реализуется за счет того, что коэффициент преломления сердечника выше коэффициента преломления оболочки. На входе волоконно-оптического тракта модулируемый источник света преобразует входные электрические сигналы в модулированный (как правило по интенсивности) свет, который распространяется по волокну, связанному с источником. На другом, принимающем конце линии оптические сигналы преобразуются фотодетектором обратно в электрические сигналы. На линиях большой протяженности иногда используются регенераторы, состоящие из приемника, усилителя и передатчика. В современных Волоконно Оптических Линиях Связи также находят применение оптические усилители.

Оптическое волокно представляет собой цилиндр из легированного кварцевого стекла. Для передачи сигналов используются два вида волокна: одномодовое и многомодовое. Название волокна получили от способа распространения излучения в них.В одномодовом волокне диаметр световодной жилы порядка 8-10мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода).В многомодовом волокне размер световодной жиды порядка 50-60мкм, что делает возможным распространение большого числа лучей (много мод).

Оба типа волокна характеризуются двумя важнейшими параметрами: затуханием и дисперсией. Затухание обычно измеряется в дБ/км и определяется потерями на поглощение и на рассеяние излучения в оптическом волокне. Потери на поглощение зависят от чистоты материала, а на рассеяние - от неоднородностей показателя преломления материала.Другой важнейший параметр оптического волокна - дисперсия. Дисперсия - это рассеяние во времени спектральных и модовых составляющих оптического сигнала.

Существует три типа дисперсии:

  • Модовая дисперсия - присуща многомодовому волокну и обусловлена наличиембольшого числа мод, время распространения которых различно.
  • Материальная дисперсия - обусловлена зависимостью показателя преломления от длины волны.
  • Волноводная дисперсия - обусловлена процессами внутри моды и характеризуется зависимостью скорости распространения моды от длины волны.

Затухание и дисперсия у разных типов оптических волокон различны, Одномодовые волокна обладают лучшими характеристиками по затуханию и по полосе пропускания, так как в них распространяется только один луч. Однако, одномодовые источники излучения в несколько раз дороже многомодовых. В одномодовое волокно труднее ввести излучение из-за малых размеров световодной жилы, по этой причине одномодовые волокна сложно сращивать с малыми потерями.

Поскольку светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространению по волокну и тем самым порождает искажения сигналов. При оценке пользуются термином "полоса пропускания" - это величина, обратная к величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в МГц*км. Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов. Если при распространении света по многомодовому волокну как правило преобладает модовая дисперсия, то одномодовому волокну присущи только два последних типа дисперсии. На длине волны 1.3 мкм материальная и волноводная дисперсии в одномодовом волокне компенсируют друг друга, что обеспечивает наивысшую пропускную способность. Затухание и дисперсия у разных типов оптических волокон различны.

Одномодовые волокна обладают лучшими характеристиками по затуханию и по полосе пропускания, так как в них распространяется только один луч. Однако, одномодовые источники излучения в несколько раз дороже многомодовых. В одномодовое волокно труднее ввести излучение из-за малых размеров световодной жилы, по этой же причине одномодовые волокна сложно сращивать с малыми потерями. Оконцевание одномодовых кабелей оптическими разъемами также обходится дороже.

Многомодовые волокна более удобны при монтаже, так как в них размер световодной жилы в несколько раз больше, чем в одномодовых волокнах. Многомодовый кабель проще оконцевать оптическими разъемами с малыми потерями (до 0.3 dB) в стыке. На многомодовое волокно рассчитаны излучатели на длину волны 0.85 мкм - самые доступные и дешевые излучатели, выпускаемые в очень широком ассортименте. Но затухание на этой длине волны у многомодовых волокон находится в пределах 3-4 dB/км и не может быть существенно улучшено. Полоса пропускания у многомодовых волокон достигает 800 МГц*км, что приемлемо для локальных сетей связи, но не достаточно для магистральных линий.